Publication: Normalisation of Weights and Firing Rates in Spiking Neural Networks with Spike-Timing-Dependent Plasticity

Normalisation of Weights and Firing Rates in Spiking Neural Networks with Spike-Timing-Dependent Plasticity

The Developmental Neural Networks Workshop. The 2019 Conference on Artificial Life (ALife 2019). Newcastle, United Kingdom. 29 July – 2 August 2019.

Abstract— Maintaining the ability to fire sparsely is crucial for information encoding in neural networks. Additionally, spiking homeostasis is vital for spiking neural networks with changing numbers of weights and neurons. We discuss a range of network stabilisation approaches, inspired by homeostatic synaptic plasticity mechanisms reported in the brain. These include weight scaling, and weight change as a function of the network’s spiking activity. We tested normalisation of the sum of weights for all neurons, and by neuron type. We examined how this approach affects firing rate and performance on clustering of time-series data in the form of moving geometric shapes. We found that neuron type-specific normalisation is a promising approach for preventing weight drift in spiking neural networks, thus enabling longer training cycles. It can be adapted for networks with architectural plasticity.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s